Network Sectorisation & Monitoring for Non-Revenue Water Control
CASE STUDY KEY POINTS

How to **build capacity** and network knowledge to **reduce water losses** and **sustainably maintain** those gains

Active Leakage Control ‘find and fix’ in **DMAs** supported by **software application** data analysis

How **EPAL** **reduced leakage by 200 m³/hour from 500 to 150 litres/connection/day**

Be as smart as you need to be
PORTUGAL NATIONAL CONTEXT

Portugal
- 92.200 square km
- 10.6 million population
- Majority of Water sector publically owned
- Mix private, public & concession operators
- Divided into bulk treatment companies, separate from distribution utilities

We know that water losses within distribution systems are an economic & environmental problem which must be addressed.

A water loss reduction project brings operational efficiency along with financial and sustainability benefits.
Problems contributing to Non-Revenue Water (NRW):

• Poor measurement of system water balances;
• Aging networks and often built with poor quality materials;
• Deficit of knowledge regarding networks: GIS, technical, operational;
• Insufficient data, standardization & systematization of reporting;
• Insufficient technical teams with low skill levels and poor knowledge.

In Portugal, efficiency targets have been set for utilities to achieve and funding mechanisms created for their implementation.
EPAL – ORIGINS IN 1868

Bulk Supply to around 2.9 million people in 34 municipalities around the Lisbon area and the city itself

Management of Águas de Lisboa & Vale do Tejo totalling 96 municipalities

Direct Supply to 350,000 domestic and commercial customers within City of Lisbon

Largest water supplier in Portugal with a net profit of €47 M and a turnover of €144 M in 2015
EPAL NON-REVENUE WATER SITUATION

Challenge

How to reduce annual NRW volume in the Lisbon distribution network which reached 40 million m3 at the turn of the millennium?

EPAL adopted solutions which:

1. Minimize inefficiency generated by water losses;
2. Are easily implemented and sustainable;
3. Are transversal to all areas of the company;
4. Allow optimization of investments and resources;
5. Generate financial return for the company and stakeholders, creating greater resilience.

Project undertaken by company employees to build capacity & retain knowledge in-house
STRATEGY REQUIREMENTS

DMA Network Segmentation & continuous telemetry monitoring

Basic Data: Clients, Network Length, Connections Pressure

Data analysis: Selection Criteria & Performance Indicators

Optimization of Active Leak Control

Quick & Effective Repairs with good materials
4 PHASES TO IMPROVE NETWORK KNOWLEDGE

1. DMA PLANNING & SET UP
 Create metering points & telemetry
 Design & boundary validation
 DMA Implementation

2. CONTINUOUS MONITORING
 Recording of pressure & flow
 Passive system with active alarms
4 PHASES TO IMPROVE NETWORK KNOWLEDGE

3. DATA ANALYSIS
Integration in analysis software
Practical Performance Indicators
System Alarm & Alert Management
Leakage assessment & Target setting
Surgical Control of leakage

4. INFORMATION REPORTING
DMA Proposals & Reference Manuals
DMA Analysis & Audit Project Reports
Distribution Network
1.250 km sectorized mains
1600 Monitoring Points
156 DMAs
DMA Data Integration & Performance Analysis Table

DMA Daily Control - Net

<table>
<thead>
<tr>
<th>DMA</th>
<th>Day</th>
<th>Flow Minimum (m³/h)</th>
<th>Flow Maximum (m³/h)</th>
<th>Snap Flow Minimum (m³/h)</th>
<th>Snap Flow Maximum (m³/h)</th>
<th>Total Volume (m³)</th>
<th>Mixing Flow Coefficient (%/30%)</th>
<th>Peak Flow Night (m³/h) (10%)</th>
<th>Peak Flow Night (m³/h) (50%)</th>
<th>Yielding Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2200</td>
<td>Chacra Sal</td>
<td>2.3</td>
<td>3.3</td>
<td>1.7</td>
<td>4.9</td>
<td>2032</td>
<td>13.8%</td>
<td>Na</td>
<td>Na</td>
<td>0</td>
</tr>
<tr>
<td>2200</td>
<td>Chacra Norte</td>
<td>11.7</td>
<td>10.5</td>
<td>8.7</td>
<td>16.4</td>
<td>9448</td>
<td>37%</td>
<td>2.5</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>2200</td>
<td>Chacra à Chacra DM</td>
<td>2.0</td>
<td>0.8</td>
<td>1.2</td>
<td>13.4</td>
<td>165</td>
<td>10.1%</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>2200</td>
<td>Vala Formosa de Cima</td>
<td>2.0</td>
<td>2.3</td>
<td>2.6</td>
<td>16.7</td>
<td>2019</td>
<td>10%</td>
<td>1.1</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>8056</td>
<td>Alto de Rostro Dade</td>
<td>4.6</td>
<td>5.7</td>
<td>4.4</td>
<td>36.1</td>
<td>5228</td>
<td>25.5%</td>
<td>2.2</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>5616</td>
<td>Casalac</td>
<td>3.6</td>
<td>3.3</td>
<td>2.8</td>
<td>22.1</td>
<td>2667</td>
<td>25.7%</td>
<td>0.8</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>2200</td>
<td>Alto de Rostro Dade</td>
<td>4.6</td>
<td>3.4</td>
<td>3.1</td>
<td>16.2</td>
<td>5956</td>
<td>14.7%</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>Aínda e Aluzé</td>
<td>6.1</td>
<td>5.2</td>
<td>5.6</td>
<td>36.0</td>
<td>5418</td>
<td>37.4%</td>
<td>2.1</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>3044</td>
<td>Escola Manuel do Melo</td>
<td>8.6</td>
<td>8.0</td>
<td>7.2</td>
<td>37.2</td>
<td>5042</td>
<td>31.2%</td>
<td>4.8</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>3050</td>
<td>Rua Capuleiro dos Medros</td>
<td>3.6</td>
<td>4.0</td>
<td>3.6</td>
<td>36.4</td>
<td>3462</td>
<td>20%</td>
<td>0.9</td>
<td>Na</td>
<td>0</td>
</tr>
<tr>
<td>3090</td>
<td>Inteiro Santo</td>
<td>12.1</td>
<td>10.8</td>
<td>10.5</td>
<td>56.0</td>
<td>5828</td>
<td>25.1%</td>
<td>0.9</td>
<td>Na</td>
<td>0</td>
</tr>
<tr>
<td>3070</td>
<td>Campo de Ouro</td>
<td>9.4</td>
<td>9.3</td>
<td>8.8</td>
<td>38.7</td>
<td>10842</td>
<td>20.8%</td>
<td>0.9</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>3098</td>
<td>Beira</td>
<td>10.7</td>
<td>10.2</td>
<td>10.5</td>
<td>135</td>
<td>1597</td>
<td>32.2%</td>
<td>0.7</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>Marx de Agua</td>
<td>16.3</td>
<td>14.5</td>
<td>9.2</td>
<td>30.3</td>
<td>1392</td>
<td>20.8%</td>
<td>5.7</td>
<td>Na</td>
<td>0</td>
</tr>
<tr>
<td>3100</td>
<td>Barão Alto</td>
<td>12.8</td>
<td>10.7</td>
<td>10.2</td>
<td>56.1</td>
<td>1334</td>
<td>20.0%</td>
<td>5.7</td>
<td>Na</td>
<td>0</td>
</tr>
<tr>
<td>8116</td>
<td>Pontinha Mutiss</td>
<td>8.2</td>
<td>9.6</td>
<td>8.4</td>
<td>29.2</td>
<td>2651</td>
<td>16.2%</td>
<td>0.3</td>
<td>0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Daily Total and Min. Graph

Daily Total Consumption & Minimum Nightline

DMA Total

Initial Date: 1/22/2014
Final Date: 2/21/2014

Min (Y1): [Value]
Max (Y1): [Value]
Min (Y2): [Value]
Max (Y2): [Value]

DMA 1050 - Algés e Restelo

Wednesday, January 22, 2014 - Friday, February 21, 2014
Leak Detection
Quantification
Repair
Validation

Pressure and Flow Profile Graph

Initial Date: 7/26/2012
Final Date: 8/7/2012

Monitoring Point: 41100000 - R Vieira Almeida

Sunday, July 29, 2012 - Tuesday, August 07, 2012
Constant Vigilance: 2014
Six years of waiting, then three in a row
CASE STUDY: DMA 1060

DMA Analysis Project Methodology:

Data analysis revealed
Recoverable Night Flow 130 m³/h

Fieldwork – Find ‘n’ Fix:
DMA boundary valve validation
• Leak Detection
• Ground microphones
• Acoustic Correlation
• Temporary DMA Alterations

Leak Repair
Validation of results
Leak location registered on GIS
CASE STUDY: DMA 1060

Critical Area – old Alcântara roundabout

Repair
CASE STUDY: DMA 1060

Critical Area – old Alcântara roundabout

Daily Flow and Pressure Profile

Water Loss equivalent to 500 000 m³/year

Repair
Leak reduction in two DMAs paid for entire DMA project for whole city in 3 years!

110 m³/h

1.4 million m³/year
• Impact of Network Rehabilitation & Active Leakage Control
• Enhanced network management & control
• Positive results across all performance indicators
• Improved Resilience & greater know-how created within EPAL
KEY CASE STUDY RECOMMENDATIONS

Provoke a **cultural change** at all levels and areas, **adapting to new concepts of management**

Build **water loss control capacity**, both **physical infrastructure** and sufficiently **trained staff**

Acquire and retain **empirical knowledge** of the company’s network within the organisation

Success achieved by creating a **dedicated water loss control team**, supported directly by management, with **resources and responsibility** over fundamental factors;
- DMA planning, implementation and subsequent management
- Maintenance of DMA meters, telemetry and boundary valves
- Active leak detection
- Data management software with KPIs focused on water loss assessment

Consider the correlation between **DMA size** and potential **achievable water loss reduction**

Water loss control concepts are well-known, the **challenge of sustainably managing** such systems over the long-term with **constant vigilance is the key goal**

Common-sense solutions, Smart People...
EPAL sharing Water Solutions